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Abstract

In Biot’s theory of poroelasticity, elastic materials contain connected voids or pores and
these pores may be filled with fluids under pressure. The fluid pressure then couples to the
mechanical effects of stress or strain applied externally to the solid matrix. Eshelby’s formula
for the response of a single ellipsoidal elastic inclusion in an elastic whole space to a strain
imposed at a distant boundary is a very well-known and important result in elasticity. Hav-
ing a rigorous generalization of Eshelby’s results valid for poroelasticity means that the hard
part of Eshelby’s work (in computing the elliptic integrals needed to evaluate the fourth-rank
tensors for inclusions shaped like spheres, oblate and prolate spheroids, needles and disks)
can be carried over from elasticity to poroelasticity — and also thermoelasticity — with only
relatively minor modifications. Effective medium theories for poroelastic composites such as
rocks can then be formulated easily by analogy to well-established methods used for elastic
composites. An identity analogous to Eshelby’s classic result has been derived [Physical Review
Letters 79:1142-1145 (1997)] for use in these more complex and more realistic problems in rock
mechanics analysis. Descriptions of the application of this result as the starting point for new
methods of estimation are presented, including generalizations of the coherent potential approx-
imation (CPA), differential effective medium (DEM) theory, and two explicit schemes. Results
are presented for estimating drained shear and bulk modulus, the Biot-Willis parameter, and
Skempton’s coefficient. Three of the methods considered appear to be quite reliable estimators,

while one of the explicit schemes is found to have some undesirable characteristics.



1 INTRODUCTION

Naturally occurring porous media are typically heterogeneous, so methods designed
to predict the elastic, poroelastic, and/or thermoelastic behavior of these materials need
to treat this heterogeneity. One approach to dealing with inhomogeneity is to treat
the medium as a composite material (Mura, 1987; Milton, 2002) and then try to bring
various effective medium methods to bear on the problem by generalizing good approaches
already in use (Thomsen, 1985; Berryman, 1986; 1992; 1998; Jakobsen and Hudson, 2003;
Jacobsen et al., 2003; Levin and Alvarez-Tostado, 2003; Tod, 2003; Levin et al., 2004;
Wilmanski, 2004; Levin and Markov, 2005).

Having an identity analogous to Eshelby’s classic result (Eshelby, 1957) — for the re-
sponse of a single ellipsoidal elastic inclusion in an elastic whole space to a strain imposed
at infinity — available in still more complex problems in composites analysis (such as
poroelastic or thermoelastic composites) is therefore of great practical interest for appli-
cations to poroelastic composites. In Biot’s poroelasticity (Biot, 1941; Gassmann, 1951;
Biot, 1962), elastic materials contain connected voids or pores and these pores may be
filled with fluids under pressure. The fluid pressure then couples to the mechanical effects
of an externally applied stress or strain. With a rigorous generalization of Eshelby’s for-
mula valid for poroelasticity, the hard part of Eshelby’s work (in computing the elliptic
integrals needed to evaluate the fourth-rank tensors for inclusions shaped like spheres,
oblate and prolate spheroids, needles and disks) can then be carried over to these new
results with relatively minor modifications. Then, effective medium theories for poroelas-
tic composites like rocks can be formulated easily by analogy to well-established theories
for elastic composites (Korringa et al., 1979; Berryman, 1980; 1992).

The author discovered a simple mathematical trick (Berryman, 1997), applicable to
media having isotropic constituents and based on a linear combination of results from
two thought experiments, that makes the derivation of a generalization of Eshelby’s for-
mula to poroelasticity an elementary task. Unknown to the author, similar ideas had
been published previously by Benveniste and Dvorak (1990) specifically for thermoelastic

composites, and without any restriction to isotropic materials. Some other closely related



ideas have also been presented by Willis (1981) and Mura (1987). In other earlier work
by the author (Berryman, 1985; 1992), the problem of acoustical scattering by a spher-
tcal inhomogeneity of one poroelastic material imbedded in another was solved and the
results then used to construct various single-scattering-based effective medium theories.
The Eshelby generalization now permits incorporation of Eshelby’s results for arbitrary
ellipsoidal-shaped inclusions into both quasistatic formulations of effective medium theory
and/or into formulas derived from scattering theory. The resulting improved estimates of
poroelastic material properties has important applications in geothermal and oil reservoir
modeling, nuclear waste disposal, COs sequestration, and hydrology — among others.

Generalization of many effective medium theories in elasticity [see Berryman and
Berge (1996) for a discussion| can now proceed more easily into the realm of poroelastic
composites by making use of this generalization of Eshelby’s results. This paper treats
four well-known theories: Mori-Tanaka (MT), Kuster-Tokséz (KT), differential effective
medium (DEM), and the coherent potential approximation (CPA) — which is closely
related to some of the self-consistent (SC) effective medium theories.

Section 2 reviews the basic formulas of poroelasticity, and the generalization of Es-
helby’s formula in this context. Section 3 derives the main results of the paper. Section
4 provides some numerical examples. Section 5 summarizes our results. Appendix A
reviews exact results in heterogeneous poroelastic media having just two constituents.
Appendix B reviews the results of effective medium theory in poroelasticity for spherical
inclusions. Appendix C collects the mathematical details of calculations for unjacketed

pore bulk modulus.

2 POROELASTICITY AND ESHELBY

Our subject is the treatment of rocks and soils — and, especially, fluid-saturated and
partially saturated rocks and soils — as composite poroelastic media. By this we mean
to study and partially answer the question of how the elastic/poroelastic constants of a
rock or soil can be estimated from a knowledge of its constituents, their volume fractions,

and possibly the geometry of individual grains and/or pores — when that information is
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also available.
Equations of quasistatic poroelasticity — as presented, for example, by Rice and

Cleary (1976) — may be written concisely in the form:

€pg = Mpgrs (0rs) , (1)
C=(m—mo)/pm = i | %3 + 7] )

Commonly understood terms appearing in these equations are the strains ¢;;, the solid
stress o0;;, the fluid pressure py, the elastic compliance tensor M;;z; of the drained porous
frame, and the increment of fluid content ¢ (which is related to the initial mg and current
m fluid mass contents, and to the initial density py of the fluid). Applying well-known
definitions from Biot and Willis (1957), the effective stress (for strain) appearing in (1)
is

(0pq) = Opg + DfOpg, (3)
where the coefficient o = 1 — K/ K! is the Biot-Willis parameter, K, is the drained bulk
modulus of the porous solid frame (jacketed modulus), and K’ is the unjacketed solid

modulus. The coefficient B is Skempton’s pore-pressure buildup coefficient (Skempton,

1954; Green and Wang, 1986; Hart and Wang, 1995), given by

1 oKy (1 1
— =1 - 4
B * Q <Kf Kg’)’ (4)

where ¢ is the initial porosity, Ky is the bulk modulus of the pore fluid, and K is the

unjacketed pore modulus. An equation for the change in porosity ¢ = V,,/V (where V,

is pore volume and V is total volume) is

— 2= br (5)

[In other work the present author (Berryman and Milton, 1991) has often used the
alternative notation K; = K| and K, = K| for the two unjacketed bulk moduli. See
Appendix A and also Brown and Korringa (1975).]

Starting from these basic equations of poroelasticity, we want to formulate methods of

computing the effective coefficients in composite poroelastic media when these media are
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themselves composed of simpler (generally microhomogeneous) poroelastic media. The
corresponding problem in elasticity has been studied extensively for almost 50 years —
the key date being publication of Eshelby’s paper in 1957. It is desirable to try to make
the transition from composite elastic media to composite poroelastic media as elegantly
as possible. One way in which this might be accomplished within effective medium theory
is through the use of similar techniques applied to the full poroelastic equations such as
those used in Berryman (1992). Another way to reach the same goal is to find new
extensions to poroelasticity of some of the classic results like Eshelby (1957) that make
the analysis virtually the same as that in the elastic case.

We restrict discussion here to poroelasticity, but the modifications necessary for ap-
plication to thermoelasticity are not difficult and follow a well-known analogy between
the two theories (Norris, 1992). In our notation, a superscript 7 refers to the inclusion
phase, while superscripts h and * refer to host and composite media, respectively. In
some applications, the composite is a very simple one, being an infinite medium of host
material with a single ellipsoidal inclusion of the i-th phase. The basic result of Eshelby
(1957) is then of the form

51(72 = Tpgrs€rss (6)

where €@ is the uniform induced strain in the ellipsoidal inclusion, €* is the uniform
applied strain of the composite at a great distance, and T is the fourth-rank tensor
relating these two strains. The summation convention for repeated indices is assumed in
expressions such as (6).

After considering two thought experiments — one when there is no fluid present in the
pores and another when a saturating fluid is present and both the confining and pore
pressures are chosen so that a uniform expansion of the host medium and inclusion occur
(Berryman and Milton, 1991), the author found previously (Berryman, 1997) that the
final form of the generalization of Eshelby’s formula to poroelasticity for isotropic media

is given quite simply by

g]()z'q) — pq(Pf) = Tpgrs [e7s — €rs(py)] - (7)

The full analysis — which will not be repeated — shows that, if the pore fluid pressure



vanishes (e.g., py = 0 in the absence of a pore fluid), then the uniform strain e disappears
from (7) and it reduces exactly to (6) as it should. In the other limiting case, if the pore
pressure has been specified to be a nonzero constant, then the uniform strain e in (7) can
be easily computed (Berryman and Milton, 1991). So, if the strain at infinity happens
to be chosen to be equal to this uniform strain, then from (7) the inclusion strain also
takes the same value — again as it should. Since the equation for €® is necessarily
linear, these two cases are enough to determine the behavior for arbitrary values of ¢*
and py. In poroelasticity, the strain e,, can be determined in advance from the applied
fluid pressure p; and the properties of the host and inclusion. In particular, we find from

results of Berryman and Milton (1991) that

(h) — @
€pg = a(h) - 0) ]ﬁdpq- (8)
K" -K”) 3
The formulas presented in the following work form one set of useful applications of this

generalization of Eshelby’s formula in (7).

3 EFFECTIVE MEDIUM THEORIES

Analysis to follow will come in two main steps for each of the examples presented.
The first step involves recovering the elastic result for the case when the pore pressure
vanishes, i.e., for the drained porous frame. In fact this step involves no new work, as

Egs. (1) and (3) imply, when p; = 0, that

€pg = MpgrsOrs- 9)

Therefore, this step is completely equivalent to the analysis already presented in Berry-
man and Berge (1996). These results (along with quick derivations for the sake of com-
pleteness) are presented only because the results are needed to understand the next
step of the analysis in each case. The second step is to derive the equivalent effective
medium theory expression for K, or equivalently for the overall Biot-Willis parameter

o' =1-K;/K!.



The main result we use for the drained analysis takes the form [see Eqgs. (19) and (20)
of Berryman and Berge (1996)] for stiffness

(L* — L(T)) Z v(i)VTisr — Z @ (L(i) _ L(T))V”&, (10)
and for compliance
(M* — M) Zv(i)W”a, = Zv(i) MO — MD)yWro,, (11)

where L* is the overall stiffness tensor (inverse of the compliance tensor M*) to be
determined, L") is the stiffness tensor of some convenient (and also arbitrary) elastic
reference material. Other parameters are: v(9, the volume fraction of the ith constituent;
L@, the stiffness tensor of the ith constituent; &, is the strain in the reference material;
and V" is the (exact and generally unknown) linear coefficient relating strains in material
i to those in material r according to &; = V¢, and W™ = MOV L"), Egs. (10) and
(11) are completely general results that follow from an earlier analysis of the elastic

problem by Hill (1963), and they are also completely consistent with each other.

3.1 Coherent potential approximation

First we consider a scheme sometimes called the Coherent Potential Approximation
(CPA) (Soven, 1967; Gubernatis and Krumhansl, 1975; Milton, 1985; Berryman, 1992;
Berryman and Berge, 1996) or the Self-Consistent (SC) Scheme (Korringa et al., 1979;
Berryman, 1980).

When there is no pore fluid present (or, equivalently, for drained frame conditions), the
equations of poroelasticity reduce to those of elasticity (10) for the porous frame material.
Within CPA, the idea is to treat all constituents on an equal footing, so no single material
serves as host medium for the others. For this reason, the CPA is sometimes known as
a symmetrical self-consistent scheme. To find the formulas for the CPA, we take the
reference material to be the composite itself, so r = *. (See Figure 1.) The formula (10)

then reduces to
D @O — LV =o. (12)
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Although this equation is exact, the linear coefficient V** is still unknown. The usual
approximation at this stage comes from substituting the Eshelby-Wu tensor T** (Wu,
1966), corresponding to inclusions of stiffness L) in host material of stiffness L, p ,, for

V*. When this is done, we have

D (L — Ly )T = 0. (13)

(Note that we use the same symbol L* for the exact and unknown effective stiffness and
for the approximations to it, but the approximations will also have subscripts to keep
track of which approximation is being discussed.) The resulting equations for drained

bulk and shear moduli are
D (KD — Kgp,)P =0 (14)

D v(GY —GEp)QT =0, (15)
where P* Q*' are the polarization factors for the bulk and shear moduli, respectively.

TABLE 1 displays three of the common results that are used for the polarization
factors, namely spheres, needles, and penny-shaped cracks. Many other choices are
possible, including oblate and prolate spheroids having arbitrary aspect ratios (Berryman,
1980). We will use just these three cases however in the examples to follow.

To make use of the generalization of Eshelby’s formula for poroelasticity in the case
when pore fluid and pore pressure are significant factors, we note that each inclusion
is effectively imbedded in the composite material (*), so it makes sense to consider
generalizing to a formula of the same form as (7). So the poroelastic version of the

general heterogeneous problem is
el — e (py) =V [e" — e"(py)] - (16)

For just two components, we know that the exact result is (7), with e determined by
(8). So, for the more general heterogeneous problem, the strain corresponding to equal

expansion or contraction of both materials 7 and * is taken to be

* _ (8
*1 a a pf
i = (m) 30 ()



and the final approximation is
e —e"(py) = T [¢" — e (py)] - (18)

If the mixture were composed only of the two materials ¢ and *, then the uniform ex-
pansion result would apply exactly. In a composite poroelastic material, (18) should be
viewed as an estimate of the true strain of the ¢th constituent. This estimate is concep-
tually on the same footing as that traditionally used when saying that ¢®) = T*¢* is
a reasonable approximation of the strain in the ith constituent of an elastic composite,
even though there may be many other types of materials present.

In both these situations, the underlying justification follows from implicitly assumed
separation of scales. The constituents composing the effective (x) materials are assumed
to be of a significantly smaller size than those considered in Eq. (18). How important
an approximation this assumed scale separation may be is clearly problem dependent.
These issues are significant, but must be analyzed from a theoretical perspective outside
of the effective medium theory itself.

To derive a formula within CPA for the Biot-Willis constant a*, we want (and need)
to make use of (18) somehow. For elasticity, the average stress equals the total stress,
so Y- v@Wg; = o. This fact was actually used to derive (10). However, for poroelasticity
with finite pore pressure py, it is no longer true that the average stress is equal to the
total stress, i.e., Y. v@a® £ 5. The correct relation for the effective stress is more
complicated than this, since pore pressure effects must also be factored into the result.

However, it is still true that the average strain is equal to the total strain, i.e.,

Zv(i)s(i) =e". (19)

Furthermore, this relation is just what is needed to make effective use of (18) possible.

Substituting (18) into (19) and rearranging, we find that

D 0@ = VHer(py) =Y oD (I - Ve, (20)

where T is the identity matrix. Equation (20) is almost what is needed, but the right

hand side seems problematic, because it depends explicitly on £*, which is arbitrary. It
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is known however that >~ v®(I—V*¥) = 0 (Hill, 1963; Berryman and Berge, 1996). This
relationship can be checked in (20) by setting py = 0 on the left hand side of (20). Then,
it is clear that the right hand side of (20) should in fact be set identically to zero. Thus,
after substituting (17) into (20), the CPA for o* is

x o —
3o (1 - P % = 0. (21)
Eq. (21) reduces to (63) of Berryman (1992) in the case of two components and
spherical inclusions, as it should. Some additional care should be taken however to check
the degree of satisfaction of the implicit subsidiary condition Y v®(I — T*) ~ 0, in
order to make sure that it is at least approximately satisfied by the resulting estimate
obtained for L{,p 4. It turns out that this condition is always satisfied exactly for spherical

inclusions. Furthermore, in the case of spheres we have P* = (K* + 2u*) /(K% + 2u7),

so it is easy to show that (20) reduces in this case to

Y v —agp,) P =0, (22)

which is formally quite similar to (but still distinct from) equations (13)—(15) for the
bulk and shear moduli. Eq. (21) is a poroelastic result; there is no corresponding result
in elasticity (but there is something similar in thermoelasticity for the thermal expansion
coefficient).

Each theory considered must produce four constants: Ky, , K — and also G4, but
this one is not so difficult as it is usually determined simultaneously together with K.
When there are only two components in the porous composite, the results of Appendix A
[from results of Berryman and Milton (1991)] can be used directly. For multicomponent
situations, we can use (70) from Appendix C to determine K, which is the only constant
still unknown:

m

This formula can be used in (50) to determine D*, from which Skempton’s coefficient B*

is then easily found.
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3.2 Average T-matriz/Kuster-Toksoz scheme

The second approximation scheme we will consider is sometimes called the Average
T-Matrix Approximation (ATA) (Berryman, 1992; Jacobsen et al., 2003) and for some
of its variations it is called the Kuster-Toks6z (KT) Scheme (Kuster and Toksoz, 1974).

In the absence of a pore fluid, the poroelastic problem reduces again precisely to the
elastic composite problem. Following the analysis of Berryman and Berge (1996), we find

that the general result (10) is conveniently written as

(L* Je = vI(LO - LWV, (24)

We obtained this form from (10) by noting that ¢ = Y v®g; = S 0@ VMg, The
Kuster-Tokséz approximation includes the assumptions that ¢ = V¢, ~ T'*¢, and

that V" ~ T"_ Then, the resulting formula for the approximation is
(Ljcp — LT =3 "o (LO — LW)T, (25)

(Also see Figure 2.) One further assumption is normally made — especially for isotropic
composites — that the tensor T?* is always the one for spherical inclusions, while T*
can be for arbitrary shapes of inclusions. With other (for nonspherical shapes) choices
of T, we could have a suite of alternate approximations that differ somewhat from the
original Kuster-Toksoz approach.

Formulas for drained bulk and shear moduli are
(Kjep — KM P = 0O (K® — K" ph, (26)
and
(Gier = GM)Q™ = vW(GY - cW)Q™. (27)
To derive a formula within ATA /KT for the Biot-Willis constant o*, we need to use the
Eshelby generalization again and make appropriate substitutions into the formula (19).

The thought experiment for KT is a little more complex than that for CPA, however, so

we actually need to do this in two steps. First, note that if we view the composite as a
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finite sphere and imbed this sphere in a host material (that may be and usually is chosen
to be the same as one of the constituent materials), then the appropriate generalized

Eshelby formula for the poroelastic case is

e® —e"(ps) = T" (e — " (py)) , (28)

where ¢ is the applied strain at infinity. Equation (28) can then be averaged to give

Z U(i)g(z Z U(z Th,z hz pf + Z v Thz (29)

But now if we note that the composite has the effective properties L and aj, in the
composite sphere imbedded in the host material, then we can also write — in place of
(28):
' =e"(ps) + T [e — " (py)] - (30)
And, since Y v®@el) = &* by construction, (30) should be equated to (29). The final
result is
(T=T™) e (ps) =D oD (T=T") e"(ps) + ..., (31)
where the terms indicated by the ellipsis (...) are of the form " v®(T" — T"*)¢ and
should vanish identically for the same reasons as those discussed in the case of a similar
term in the derivation for CPA. Thus, the KT formula for the Biot-Willis parameter o*
is .
(1 P) s = 30 (- P
Eq. (32) reduces to (56) of Berryman (1992) in the case of only two components and

(32)

spherical inclusions as it should.

The remaining constant to be determined is K. The result (70) is in the right format
to be used directly by the KT theory, so we do not need to repeat any analysis. The
constants such as o and K}, etc., in (70) and in the polarization shape factors appearing
there should be interpreted as values computed within the KT approximation as discussed
here.

As in the CPA, we now have a subsidiary condition >~ v®(T" —T") ~ 0 that should
be checked for approximate satisfaction by L} . Again, we find this condition is always

satisfied exactly for spherical inclusions.
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3.3 Differential effective medium approximation

The third scheme we consider is the Differential Effective Medium (DEM) Approxi-
mation (Cleary et al., 1980; Norris, 1985; Avellaneda, 1987; Berryman and Berge, 1996).
We limit the treatment here to the two-component case, as that is easiest to explain.
This method is derived by assuming the composite is formed by successively mixing very
small (infinitesimal) fractions dy of one inclusion material () in another host material.
The host medium changes gradually during this process from material (h) at y = 0 into
the desired composite material (*) at some finite y value. (See Figure 3.) Starting with
(10), the resulting formula for the stiffness is the differential equation

(1- y)dﬁ‘lyLzEM(w = [L® = Ly ()] T, (33)

where the initial value of the stiffness tensor is L% ., (y = 0) = L®. The Eshelby-
Wu tensor T* is the one corresponding to inclusions of stiffness L(®) imbedded in host
material of stiffness L7, ,,. The resulting system of coupled equations may be integrated
to any desired value of total inclusion volume fraction y = v quite easily using (for
example) a Runge-Kutta scheme (Hildebrand, 1956).

The formula for the Biot-Willis parameter is obtained in this scheme most easily by
starting from (32) for the KT method, noting first that the sum on the right is reduced
to a single term for the phase that is not the initial host phase, replacing the parameters
for the host medium by their values evaluated at concentration y and the x parameters
by their values evaluated at concentration y + dy. The volume fraction is replaced by
v — dy/(1 —y) to account for the fact that more than the amount dy of the composite
host material must be replaced in order to achieve the new desired volume fraction y+ dy.
Finally, taking the limit as dy — 0 gives the desired formula. For ellipsoidal inclusions,

the result is
(1- y)d_yaDEM(y) = [a() - aDE‘M(y)] P, (34)
where o, ;,,(0) = ™. For spherical inclusions, (34) reduces to (70) of Berryman (1992),

as it should.
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The corresponding result for the drained bulk and shear moduli obtained directly from

(33) are

U—M%KhmwﬁﬂK@—Khm@ﬂVﬂ (35)
and
(1—yx% S () = [69 — Chpn ()] Q7 (36)

where Kpga(0) = K® and Gpga(0) = G™. Both results were obtained previously for
spherical inclusions (Berryman, 1992), but the present derivation is much more compact.
The generalization to nonspherical inclusions is now straightforward, requiring only a
reinterpretation of the polarization factors P** and Q* for different particle shapes.
This case is especially easy to use in poroelasticity because — as we have restricted
the discussion here to the two-component case — the exact results of Appendix A apply
for both a* [i.e., Eq. (43)] and K7 [i.e., Eq. (48)]. No further discussion is needed —

just correct application of the results for K4(y) and G4(y) within these formulas.

3.4 Mori-Tanaka approximation

The final approximation we consider is the Mori-Tanaka (MT) Scheme of Mori and
Tanaka (1973), as described by Weng (1984), Benveniste (1987), Ferrari (1991), Ferrari
and Filipponi (1991), and others [see, for example, Berryman and Berge (1996)].

For the drained frame, the Mori-Tanaka approximation is obtained by assuming the
composite has a host material with imbedded inclusions and then choosing the host to
serve as the reference material, so r = h. (See Figure 4.) Making this choice in (10) and

then substituting V* ~ T we obtain

D oL — Ly )T = 0. (37)

The Mori-Tanaka results for drained bulk and shear moduli with arbitrary ellipsoidal

inclusion shapes are

SO (KD — Kyp) PH =0, (38)

15



and

> v(GY - Ghp)QM = 0. (39)
Because the Mori-Tanaka scheme cannot be derived using any analogy to scattering
theory — unlike the other three schemes considered so far [see Berryman and Berge
(1996)], there is some ambiguity about how to apply the present method within Mori-
Tanaka and different choices of formulas for the Biot-Willis parameter can result. One

of the more straightforward approaches can be shown to lead to the formula

Z v (a® — o, )PP =0, (40)

when the inclusions are all spherical in shape. We stress however that (40) is not the
only possible formula that could also be considered fully consistent with the Mori-Tanaka
scheme. In particular, another approach leads to a formula similar to (32). Note, how-
ever, that the known exact results for two-component composites provide very useful
constraints on our choices. It is quite easy to see that (38) and (40) guarantee that (43)
holds for two components. Also, the simplicity of all three formulas (38)-(40) is another
clear advantage; each formula amounts to a weighted average, wherein the weights are
either v P" or Q"

The remaining constant to be determined is K. The formula (70) is already in exactly
the right format to be used directly by the MT theory, so again we do not need to repeat
any analysis for this case. The constants such as a* and K, etc., appearing in (70) and
especially in the polarization shape factors need to use the values computed within the
MT approximation as discussed above.

In fact, it is easy to show that both (40) and (34) have the advantage that they repro-
duce the known exact results (Berryman and Milton, 1991) for two component poroelastic
media. This constraint appears to be a very useful selection criterion for choosing among
various possibilities that arise when trying to identify the proper generalizations of these

theories for the poroelastic case. We expand on this issue in Appendix A.
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4 EXAMPLES

TABLE 2 provides examples of the results obtained using the methods discussed above.
Two methods (CPA and DEM) are known to be realizable (Milton, 1985; Norris, 1985;
Avellaneda, 1987). These particular examples were computed assuming spherical inclu-
sions.

Input parameters are from Table 7 of Berryman (1992) for a clay and Kayenta sand-
stone mixture. Solid sandstone grains occupy 60% of the volume, porous clay occupies
the remaining 40%, and the total porosity is 16%. DEM™ assumes the weak component
is the host, while DEM™ assumes the strong component is the host. Since DEM™ pro-
duces extremely weak results, we list only the DEM™ results. For composites with only
spherical inclusions, KT and MT are the same. Furthermore, both are equal to the upper
Hashin-Shtrikman bounds (Hashin and Shtrikman, 1961). It is expected that the three
methods considered in TABLE 2 should give differing results, because they implicitly
assume different microstructures (Berge et al., 1993).

General observations about the results in Figures 5 and 6 are these: As anticipated,
the MT and KT results are identical for all the parameters in the case of sphere-sphere
modeling (the host material and inclusion material are both modeled as being spherical
in shape). These results are the stiffest found for G4 and K, but such results are un-
avoidable, since these two methods both reproduce the Hashin-Shtrikman upper bounds
in this case. As is often observed, the DEM™ model (assuming the stiffer component is
host) is stiffer than the CPA results in all cases. We do not display DEM™ (assuming
the more compliant component is host), but the result will always be the opposite —
DEM™ computed stiffness always lies below the CPA results. As we change the shapes
of the inclusion phase, we find that all of the results become more compliant, but three
of the results maintain the same relationships with each other. We observe MT results
for stiffness are always greater than DEM™ results, which are in turn always greater the
CPA results. The DEM™ results (not shown here) would have always been found to lie
below the CPA results as well.

On the other hand, the KT results do not maintain this relationship. The results from
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KT are fairly volatile, and change from being stiffest for sphere-sphere to being most
compliant (of those shown) for sphere-penny. Furthermore, the KT method displays
some unphysical behavior (especially for the sphere-penny model), showing that the
bulk and shear moduli both vanish, but for different values of the clay volume fraction.
Furthermore, the Biot-Willis parameter should never exceed unity, but — although the
other three models continue to predict reasonable values of o* for all volume fractions
— the KT model fails in this respect for values of clay volume fraction just above 10%.
The author has taken some care to make certain that this result is not just a numerical
or coding error, while earlier results (Berryman, 1980) have shown that KT is in fact
unphysical for some models in the sense that it predicts moduli that exceed the Hashin-
Shtrikman upper bounds for quite small values of the inclusion volume fraction. So it
appears that these observations provide another reason to use this method only with
considerable caution for larger volume fractions and alternative inclusion shapes that
differ substantially from spherical.

In some cases the magnification factor K,/K, is quite large. However, this result
is found only when the estimated drained bulk modulus is quite small. The physical
constraint that must always be satisfied is that K, < K., where K! is the bulk modulus
of stiffest component of the poroelastic system. This condition is always satisfied by the

CPA, DEM, and MT methods.

5 CONCLUSIONS

We have demonstrated that the generalized Eshelby formula (7) derived earlier by
the author (Berryman, 1997) can be successfully used in various well-known effective
medium theories to estimate the Biot-Willis parameter a when the inclusions are of
arbitrary ellipsoidal shape. This generalizes earlier work of the author (Berryman, 1985;
1992) that provided means of computing these same constants, but only for the cases of
spherical inclusions using the CPA, DEM, and KT methods. The new formulas are no
more difficult to compute that the corresponding formulas for the bulk and shear (empty

porous) frame moduli of these materials.
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Our results also show how to compute the remaining poroelastic parameter B (Skemp-
ton’s coefficient) for a general ellipsoidal inclusion within these various effective medium
theories. For two-component media, the procedure for doing so is a straightforward ex-
tension of work published earlier by Berryman and Milton (1991) based on an analysis
of (5), and in particular the unjacketed pore bulk modulus K”. For multicomponent
porous media, the results of Appendix C provide good approximations, and these have
been shown explicitly to reduce to the exact results when it is appropriate for them to
do so.

The main conclusions are that three of the models considered provide physically rea-
sonable results over a wide range of volume fractions. These three methods are the Mori-
Tanaka (MT) explicit method, the differential effective medium (DEM) method, and the
coherent potential approximation (CPA). Nevertheless, these methods do not produce
the same answers. The reason for these differences is that each method implicitly as-
sumes a different microstructure for the composite, and the nature of the microstructure
does indeed matter to the results in real composites (Berge et al., 1993). So the actual
microstructure should be taken carefully into account when trying to decide which of
these methods to apply in a given situation. The fourth method considered (the Kuster-
Toksoz explicit method), although reproducing the Mori-Tanaka results for sphere-sphere
composites, does not necessarily produce physical results for mixtures of other particle
shapes that differ substantially from spheres; so we do not generally recommend this

method for use when estimating parameters for poroelastic composites.
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APPENDIX A: EXACT RESULTS FOR COMPOSITES WITH TWO POROUS
CONSTITUENTS

One particularly powerful means of checking the validity of any estimation scheme is
to compare the results with those of various exact results that may be known for special
cases. In the present class of problems, a result of Berryman and Milton (1991) provides
a convenient check on all the formulas derived so far. We give a brief derivation for
completeness.

The strain e® of the i-th inclusion type, and the increment of fluid content ¢(?, are

connected to the confining pressure p, and the pore-fluid pressure p; by
(i) —a® —
e 1 1 o c
== T (41)
a0 K9\ —a o0/B0 | \ —p,
where all the coefficients are defined as in (1) and (2). Then, a similar relationship holds

for the overall behavior of a composite porous system:

e’ _ L 1 —aof —Pe (42)

For an arbitrary two-component mixture of Gassmann materials, the Biot-Willis pa-
rameter o must satisfy the conditions
2) _ o a® — oM

= = = —x. (43)
K:—kKY KY -k K9P - gV

o —a af

This result follows after first noting that there exists a ratio b = ps/p. such that
et =@ = ¢, (44)

and that this ratio is given by

/Ky — /KD

= ) 45
aW/KD — a®/KP ()
Once o =1 — K} /K has been determined from (43), then
K*
K,=—%. 4
|= (16)
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We always assume the value of K has been either measured directly or estimated using
one of the effective medium theories.
Based on (5), Berryman and Milton (1991) show that

2 . .
1 1 o) — @ or— | 1—b
O L Z (3) _
’ <K§’ K§>_l CTED K; | b (47)

=1

The same result can be written alternatively as

ot ¢ N2 (3) & —g® a) —a(2) 2 (4) (1) _
K KT = DV KO + KD_KD D etV (a « )

= (" = ¢)x + X2, 00l — 60 (25— x).

K9

(48)

where x was defined in (43). In either form, these results can then be used to substitute
directly for K into the equation for Skempton’s overall coefficient

1 QK (1 1
— =1 — . 49
B e <Kf Kg) (49)

It is not hard to show that all the formulas presented satisfy these constraints as long
as the side conditions that have been mentioned in text [e.g., " v® (1 — P*) = 0 for CPA
or the corresponding side conditions for the other problems| are also satisfied. Checking
for satisfaction (or approximate satisfaction) of this condition is especially easy to do for
spherical inclusions, but is not strictly limited to that case. Thus, the theories presented
here that do satisfy this important additional condition are presumably the best choices.

Another definition that will be convenient to use in the main text and also in the

following Appendix B is

1 ¢ (a ¢\_¢ (al-a) ¢
B_Kf+<K; K;'>_Kf+< K, K;'>‘ (50)

Then the undrained bulk modulus is expressed as K, = K4+ o?D = K;/(1 — aB), and

D also satisfies
B aD
N Kd + a2D'

Scattering theory (Berryman, 1992) shows that D, or preferably the compliance 1/D, is

aD = BK,, aswellas B (51)

the most natural quantity to estimate when trying to study the behavior of undrained

quantities in poroelasticity. The term ¢/K; averages simply since the pore fluid bulk
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modulus is either constant or (if not constant) is given by the volume fraction weighted
harmonic mean of the fluid bulk moduli. The value of the next term a/K is already
known from the preceding analyses of K; and «. So, the final unknown in our problem

is the unjacketed pore bulk modulus K, treated specifically in Appendix C.

APPENDIX B: EFFECTIVE MEDIUM RESULTS FOR POROUS COMPOSITES
WITH SPHERICAL INCLUSIONS

This Appendix will summarize results from Berryman (1992) that are relevant to the
analysis of the main text. Results for the Mori-Tanaka method for spherical inclusions
are the same as those for Kuster-TokSoz. The parameter D was defined in (50), and
is the quantity that needs to be estimated in order to determine effective unjacketed
pore modulus K. For simplicity of presentation, formulas are presented here for two
components. Multicomponent versions, as well as some alternate formulas, may be found

in Berryman (1992).

B.1 Coherent Potential Approximation

The effective medium is also the background medium for CPA, so there is only one
estimate available for each effective constant.

a0 2 (i)
E v —K K =0 or —1 = E _ Y ;
< KO +4G*/3 K*+4G*/3 & K® +4G*/3

1=

(52)

Similar expressions are then available also for the effective shear modulus G*, but the
equations for K* and G* are obviously coupled. Effective Biot-Willis parameter is deter-

mined by

PG (53)
>V Ko ags "
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where K* is determined in (52) and G* by the companion equation (not shown). The

formula for D* is

1 2 o 2 () W2 2 @ (@@ —a)(a®—al))
D* — Zi:l D® + Zi:l v KO 44G*/3 — Zi:l D® + K*+4G*/3 (54)

2 (i) (1) _,(2) 9 i . .
=21 o T (%) i v (@l — o),
where K* and G* are determined as before, and o is determined by (53). The various

forms are shown here to emphasize the similarities among the CPA and the other results

to follow.

B.2 Kuster-Toks6z and/or Mori-Tanaka

The host material A can be either of the two constituents. So there are two KT (MT)
approximations depending on which constituent plays host:

2 * _ K@ 2 (%)
DIt S Ry N U —
2" KO + 4G /3 K +4G® /3 K® +4G™/3

i=1

(55)

Similar expressions are then available also for the effective shear modulus G*, but the

equations for K* and G* are not coupled. Effective Biot-Willis parameter is determined

by

* _ )
U KGO +agmyz (56)

NE

i=1
where K* is determined in (55). The effective unjacketed pore modulus K” is determined

by
1 2L @ (P — o) (a* — aV)

DT D0 T K+ 4GW]3

1=

(57)

where K* and G* are determined as before, and o* is determined by (56). This particular
expression for D%, did not appear in Berryman (1992), but nevertheless follows from

the same analysis.
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B.3 Differential Effective Medium

The equation that determines the drained bulk modulus within the DEM approach is

K*(y) +4G*(y)/3
K® +4G*(y)/3

(1- y)d% K*(y)] = [K® - K*(y)] (58)

where K*(0) = K™ with A and 7 being the host and inclusion phases, respectively.
Like the K'T approach, there are two distinct DEM approximations made possible here
by different choices of the host material. There is also a similar equation for the shear
modulus G*(y) and it is coupled to (58), thus requiring simultaneous integration of the
two equations. Effective Biot-Willis parameter is determined by

(-1 )] = [ - a')] LR (59

which, in light of the form of (58), can be integrated to yield

a*(y) —a®  K*(y) - KY
ah) — o KW KO

(60)

where K*(y) is determined by (58) and the companion equation for G*(y) (not shown).
Equation (60) is exact for a two-component medium (Berryman and Milton, 1991). The

effective unjacketed pore modulus K is determined by

1 & o oW —a®\ & e
D=2 Dot (K(l) . K(2)> Y v —a), (61)
=1 i=1

where o* was found in (60).

APPENDIX C: UNJACKETED PORE BULK MODULUS K¢

The formula relating changes of porosity to changes of differential and pore pressure

in poroelasticity is

¢ 11
—0¢ = ¢ K K" 5pf, (62)
where dpy is the change in pore pressure, and dpg = dp. — 6py is the change in differential

pressure (some researchers call this the “effective pressure,” but we reserve that term

instead for quantities such as dp. — adpy).
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Equation (62) as written is true for the composite medium as a whole, and also true
for the individual constituents with the stipulation that the confining pressure to be
used is the one actually experienced by that constituent. We further stipulate (this
is not required, but merely a convenience for presentation) that each constituent is a
Gassmann material, by which we mean that each constituent is composed of a single
mineral. In this situation K| = K9 = K o for the i-th constituent, and the formula for

its change of porosity simplifies to

. @ — @
[0
I PO S MO} (63)
KO

We are not assuming that all the solid minerals are the same, only that each identified
porous constituent has uniform solid bulk modulus K,(f;).

Porosity averages in an especially simple manner (for linear poroelastic analysis) if
we assume that the changes in volume fractions (v*)) of the constituents are negligible.
For the thought experiment of Appendix A, this assumption is exactly right. For other
situations, it is usually an approximation. We make this approximation here to achieve
some simplicity, not out of necessity. With this approximation, we have

5¢" =Y vWsgl. (64)
i=1
Combining (64) with (62) and (63), we obtain a formula for K. But to arrive at the
formula, we need to use (7) to relate changes of global strain &* to changes of local
confining pressure. We assume that the pore pressure has had time to equilibrate over
the entire composite in order to determine the final constants of the composite.

First, note that
op. = —Kje* + o py and  opl¥) = —Kt(li)a(i) + aWsp;, (65)
and, from (7), we also have

g( ) = —Xh' ?f&pq + qurs[grs + Xh 71057"5]’ (66)

25



where x"* is defined as in (43). We can choose to treat ¢* and dp; as the independent

variables. Then, for the ¢-th constituent,

56 = () — ) (0 + 25)

(i) (i) hi[ % hi 1 hi (67)
= (a® — ) (PMler + xMiopg] + [ 25 — 3] oy
And, similarly, we have

O R L (68)

Substituting (67) and (68) into (64), and making use of the linear independence of £*

and dpy, we find two equations for the coefficients:
of —¢f = Zu ) — ¢ phi (69)

and

( K K,,> Zv (0 —¢9) [x’“’P’”’ + <K1() - x’“’ﬂ : (70)

m

In the case of just two components, (70) can be simplified by noting that x" = x is
constant, so that combining (69) with (70) recovers the exact result (48). Thus, for
multicomponent media, (70) generalizes (albeit approximately) the exact result (48).
The choice of generalization can also be tailored specifically to each type of effective
medium approximation by making use of the dependence on the host medium in the

factor x® and on the particle shapes in P".
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TABLE 1. Three examples of coefficients P and () for spherical and nonspherical
scatterers. The superscripts h and ¢ refer to host and inclusion phases, respectively.
Special characters are defined by 8 = pu[(3K + p)/ (3K + 4p)],

v = pl(BK + )/ (3K + 7u)], and ¢ = (1/6)[(9K + 8u)/(K + 2)]. Expressions for
spheres and needles were derived by Wu (1966) and Walpole (1969). Expressions for
penny-shaped cracks were derived by Walsh (1965) and assume K® /K" << 1 and
p® /) << 1. The aspect ratio of the cracks is a..

Inclusion shape  P™ QM
KM 42,0 (h) ¢ (h)
3 p+¢

Spheres RO+ 1,7 PONYQ)

Needl K(h)+u(h)+%ﬂ(i) 1 me 2H(h)+,y(h) K(i)+%u(h)

eedles KO3 i@ 5 \a®ap® T 20m® T Ko rm 1 Lo
KW 44,6 L 8,() K042 (@ 0
3 1 |22 3
Penny cracks KO0 tracf® 5 (1 t L ra w12y T K(i)+%u(i)+7racﬂ(h))
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TABLE 2. Three examples of computed values of the drained frame shear and bulk
moduli G, and K, the Biot-Willis parameter o*, and the magnification factor K} /K =
1/(1 — aB) using the CPA, DEM™, and MT theories for spherical inclusions and 40%

volume fraction of clay.

Model G* (GPa) K (GPa) o* K:/K;

CPA 5.82 779  0.7795 2.2

DEM* 10.43 13.81 0.636 14

MT 12.42 16.38 0.568 1.3
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FIG. 1: The coherent potential approximation (CPA) treats the composite itself (regions of small
dots) as the host and sets the single-scattering contributions from all the inclusions (shown as

white and black circles on the left) equal to zero.

FIG. 2: The average T-matrix approximation (ATA) or Kuster-Toksoz (KT) method treats one
of the constituents (shown as white background here) as the host and sets the single-scattering
contributions from the inclusions equal to the scattering from a sphere of the effective composite

(shown here as the cluster of dots inside the sphere).
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FIG. 3: The differential effective medium (DEM) approach treats the last computed effective
constant K (y) (shown here as the sparse dots) as the host and sets the single-scattering con-
tributions for infinitesimal concentrations of inclusions equal to the scattering from a sphere of
the next effective constant K (y + dy) (shown here as the denser dots). After taking the limit
dy — 0, a differential equation for the effective constants is obtained (shown here as the densest

dots).

FIG. 4: The Mori-Tanaka (MT) method is a type of weighted averaging scheme that does not
use a scattering analogy in formulating the estimator. The host material (shown here as the
region filled with small dots on the left) will necessarily be one of the constituents. Inclusions of
one other or many other materials are then imbedded in the host. The result of the averaging
scheme is the effective medium represented schematically by the region of fatter dots on the

right.
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FIG. 5: Drained shear modulus G}, and bulk modulus K variation as a function of clay volume

fraction for various models.
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FIG. 6: Variation of the Biot-Willis parameter « and the magnificiation factor K, /Ks = 1/(1—

aB) as a function of clay volume fraction for various models.
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